PCSK9 Inhibition: From Genetics to Patients

John Chapman BSc, Ph.D., D.Sc., FESC Research Professor, University of Pierre and Marie Curie Director Emeritus, INSERM Dyslipidemia and Atherosclerosis Research Unit, Past-President, European Atherosclerosis Society Pitié-Salpetriere University Hospital, Paris, France

Unmet clinical needs in CVD: Focus on lipids

What are the principal factors which regulate circulating LDL-C levels?

Can such mechanistic understanding identify new therapeutic targets ?

Regulation of plasma LDL-C levels

Rates of hepatic production of precursor VLDL

Rates of intravascular remodelling of VLDL and LDL

Rates of direct hepatic production of LDL

Rates of hepatic LDL-R-mediated catabolism

Rates of non-LDL-R-mediated LDL catabolism

VLDL very low-density lipoprotein; LDL low-density lipoprotein; LDL-R, LDL-receptor

Regulation of plasma LDL-C levels

Rates of hepatic production of precursor VLDL

Rates of intravascular remodelling of VLDL and LDL

Rates of direct hepatic production of LDL

Rates of hepatic LDL-R-mediated catabolism

Rates of non-LDL-R-mediated LDL catabolism

VLDL very low-density lipoprotein; LDL low-density lipoprotein; LDL-R, LDL-receptor

Catabolism of LDL by the hepatic LDL-R

Ē

http://my.americanheart.org/idc/groups/ahamah-public/@wcm/@sop/@scon/documents/downloadable/ucm_438651.pdf (Accessed January 2014)

PCSK9: Key regulator of LDL-R expression and LDL degradation

http://my.americanheart.org/idc/groups/ahamah-public/@wcm/@sop/@scon/documents/downloadable/ucm_438651.pdf (Accessed January 2014)

What is PCSK9?

Pro-protein convertase subtilisin-like kexin type 9

- A secreted protease which is a 692 amino acid mature protein, consisting of 3 domains: prodomain, catalytic and C-terminal
- Primarily expressed in liver, intestine and kidney
- Rapid turnover in plasma (<10 mins); plasma removal principally via the LDL-R

PCSK9 binding to the LDL-R

Horton JD et al. J Lipid Res 2009; 50: S172–7

Impact of PCSK9 on the hepatic LDL-R

- LDL receptor numbers on the cell surface decrease as a result of enhanced intracellular degradation of the LDL-R
 - Plasma LDL levels rise

Does variation in the PCSK9 gene alter its function, with impact on circulating LDL levels?

- Gain of function (GoF) missense mutations = genetic hypercholesterolaemia (FH phenotype)
- Loss of function (LoF) nonsense mutations = hypocholesterolaemia with low LDL levels and major reduction in CHD incidence

PCSK9 GoF mutations =

Severe hypercholesterolaemia

Clinical characteristics and fasting lipid values (mmol/l) in patients heterozygous for mutations N157K and D374Y in the PCSK9 gene and close relatives

Family	ID	Sex	Age	Mutatyion	Total serum cholesterol	HDL cholesterol	Triglycerides	LDL cholesterol	Xanthomas	CHDª
0034	FH122	Female	42	D 374Y	13.6	1.0	1.01	12.1	+	-
0034	FH123	Male	45	-	6.5	N ot determined	Not determined	Not determined	-	-
0034	FH121	Female	19	D 374Y	13.6	0.8	2.05	11.9	+	-
0034	FH120	Female	21	D 274Y	8.9	1.0	0.56	7.4	+	-
0075	F H 75a	Male	40	D374Y	11.6	1.4	1.4	9.6	+	-
0075	FH85c	Female	35	-	6.3	N ot determined	Not determined	Not determined	-	-
0075	F H 75d	Male	7	D374Y	8.8	1.5	0.9	6.6	-	-
0075	FH75b	Female	16	D 374Y	8.1	1.0	0.8	6.7	-	-
0305	0481	Female	25	N 157K	11.8	N ot determined	0.7	Not determined	-	-
				D 374Y						

HDL, high-density lipoprotein; LDL, low-density lipoprotein.

^aCHD, coronary heart disease manifested as angina pectoris and myocardial infarction.

Leren TP. Clin Genet 2004; 65: 419-22

Population studies: PCSK9 LoF mutations

- Subjects with LoF mutations in PCSK9 or total lack of PCSK9
 - Have naturally low levels of LDL-C and reduced CHD (→ efficacy)
- These mutations are not associated with other detectable abnormalities (→ safety)

•					
		PCSK9 Mutation	LDL-C Reduction	CHD Reduction	Population
	Benn <i>et al.</i> JACC 2010	R46L	12%	46%	Copenhagen City Heart Study n=10,032 Copenhagen General Population Study n=26,013 Copenhagen Ischemic Heart Disease Study n=9654
	Cohen <i>et al</i> . NEJM 2006	R46L Y142X or C679X	14% 28%	47% 88%	Atherosclerosis Risk Community Study (US) (Black patients, n=3363; white patients. n=9524)

Adapted from Cohen JC. N Engl J Med 2006; 354: 1264–72, Benn MJ. Am Coll Cardiol 2010; 55: 2833–42.

LoF PCSK9 mutations are associated with low LDL-C and low prevalence of CHD events

ARIC=Atherosclerosis Risk in the Community Adapted from Cohen JC. N Engl J Med 2006; 354: 1264–72.

PCSK9

Emergence as a new therapeutic target in hypercholesterolaemia and related CHD

PCSK9

Potential targets in the PCSK9 pathway

Hedrick JA. Curr Opin Investig Drugs 2009, 10: 938-46.

- **1.** Reduction of PCSK9 protein production
- 2. Reduction of PCSK9 mRNA expression
- **3.** Inhibition of PCSK9 binding to the LDL-R
- 4. Inhibition of PCSK9mediated degradation of the LDL-R

Therapeutic agents targeting PCSK9

- Inhibition of the binding of PCSK9 to the LDL-R e.g. MABs, small peptides
- Inhibition of PCSK9 synthesis e.g. ASOs, siRNAs
- Inhibition of the intracellular processing of PCSK9 to the mature protein (small molecules)

PCSK9

A new therapeutic target in

hypercholesterolaemia

